

COURSE CODE: MAT-211OFFICE HOURS:COURSE TITLE: Calculus IIIOFFICE LOCATION:
COURSE TITLE: Calculus III OFFICE LOCATION:
DAY(S) AND TIME(S): EMAIL:
LOCATION: PHONE:

COURSE PREREQUISITE: Complete MAT-111

CREDITS: 4

COURSE DESCRIPTION:

This course considers the limits, continuity, theory, and techniques of differentiation and integration, with applications of both processes to science/engineering. The use of mathematical software in problem-solving is emphasized.

STUDENT LEARNING OUTCOMES:

Upon successful completion of this course, students will be able to:

- 1. Graph parametric equations
- 2. Use Time as a parameter in parametric equations
- 3. Convert rectangular equations to parametric equations
- 4. Find the Equation of the tangent line at a point on a plane curve and the arc length of a plane curve or a curve represented by polar equations
- 5. Convert between rectangular and polar coordinates
- 6. Identify and graph polar equations
- 7. Use properties of vectors
- 8. Find the scalar and vector product of vectors
- 9. Find the angle between two vectors and the projection of vectors
- 10. Find the vector equation and parametric equations of a line in Space
- 11. Determine whether two lines are skew, parallel or intersecting.
- 12. Find an equation of a plane
- 13. Determine whether two planes are intersecting or parallel.
- 14. Find the distance between two points
- 15. Analyze a vector function: domain, graph, limits, continuity, derivatives
- 16. Find the unit tangent vector, the principal unit normal vector of a smooth curve
- 17. Find the arc length of a curve traced out by a vector function
- 18. Find the curvature of a plane curve given by

STEM STUDENT HUB

Information & Resources tailored towards students taking any STEM courses

Career Coach Research Guides And More!

- 19. Find an osculating circle
- 20. Find the velocity, acceleration, and speed of a moving particle
- 21. Express the acceleration vector using tangential and normal components
- 22. Work with functions of several variables: level curves, level surfaces, limits and continuity, partial derivatives, second-order derivatives
- 23. Interpret partial derivatives as a rate of change
- 24. Find the change in
- 25. Find the differential of a function of three or more variables
- 26. Find the directional derivatives and Gradient of a function of three
- 27. variables
- 28. Find a tangent plane to a surface
- 29. Find a normal line to the tangent plane
- 30. Find Critical Points, the absolute extrema of two variables and apply to solving optimization problems
- 31. Find Riemann sums of over-closed defined on a closed rectangular region
- 32. Find the volume under a surface and over a rectangular region.
- 33. Use Fubini's theorem for x- and y- simple regions
- 34. Apply properties of double integrals and Find areas and volumes.
- 35. Find double integrals using polar coordinates
- 36. Find Area and volume using polar coordinates
- 37. Find surface areas above a region R.
- 38. Find Triple integrals over closed region and more general solid
- 39. Find the volume of a solid
- 40. Find triple integrals over xy-simple and yz-simple solids.
- 41. Find triple integrals using cylindrical and spherical coordinates.
- 42. Describe a vector field
- 43. Define a line integral in the p[lane and determine its value along a smooth curve
- 44. Find integrals of the form
- 45. Find line integrals along a piece-smooth curve and in space
- 46. Familiar with a conservative vectors and its potential function
- 47. Use the fundamental theorem of Line integrals
- 48. Reconstruct a function from its gradient: Finding the potential function for a conservative field
- 49. Use Green's theorem to find a line integral
- 50. Use Green's theorem to find area
- 51. Use Green's theorem with multiply-connected Regions.
- 52. Describe surfaces parametrically
- 53. Find parametric representation of a surface
- 54. Find equations for a tangent plane and a normal line
- 55. Find the surface area of a parametrized surface
- 56. Find the surface integrals using double integral
- 57. Determine the orientation of a surface
- 58. Find the flux of a vector field across a surface application: Electric Flux
- 59. Find the divergence of a vector field
- 60. Use the divergence theorem
- 61. Interpret the divergence of
- 62. Find the Curl of

- 63. Verify Stokes' theorem
- 64. Use Stokes' theorem to find an integral
- 65. Use Stokes' theorem with conservative vector fields
- 66. Interpret the Curl of

TEXTBOOK AND SUPPLEMENTAL MATERIALS:

Textbook: Calculus, Early Transcendental functions, 8th edition, **Author**: Larson, Bruce Edwards

Supplemental Materials:

- The online homework is obligatory and due by the next class meeting.
- Students are required to purchase the access code. Codes are available at the bookstore.

GRADING POLICY:

3 In Class Exams	70%
Final Exam	30%

SAMPLE COURSE SCHEDULE:

Week	Section number	Section name	Homework
1	10.2	Plane Curve and Parametetirc equations	1, 3, 5, 13, 15, 17, 31, 57, 59, 61, 63, 79,
1	10.4	Parametric equations and Calculus	1, 3, 5, 7,9, 11,13,14,45,47,49,
1	10.4	Polar Coordinates and Polar Graphs	1, 3, 7,3,33, 37,39,43, 49,51,23,27,31,77.79, 83, 85,87,104,105,107,109
2	10.5	Area and Arc Length in Polar coordinates	1, 3,5, 9,11,13,15, 17,19, 21,29,33,35,37,39,41,45,47,
2	11.1	Vectors in the Plane	5, 7,9,11, 13,49,51,53,61, 63,67, 71,87, 89,91, 93,95,
2	11.2	Space coordinates and Vectors in space	1,3,5,7,9,11,15,19,21,27,29,41,43,49,51,53,55,57,59,61,63, 65,67,71,75,65,67,91,92,99,1100,03,104
3	11.3	The Dot product	1,3,5,9,12,13,17,19,23,25,27,35, 37,59,61,63,
		Exam 1	

3	11.4	The cross-product of two vectors in Space	1,2,3,5,7,9,11,13,15,21,23,25,27,29,31,37,39,33,35,37, 39,41,43,45,47,47,1,53,55,59,79,85,89,91,93,102,107,108,1 09,110,111,112,113,114,
3	11.5	Lines and Planes in Space	1-6,7,11,13,21,35,37,39,41,43,47,51,53,
4	11.6	Surface in space in space	1,3,5,7,11,13,15,17,19,21,23,25,27,31,33,63,65,67,71,73,75 ,91,93,95,97,101,103,105,107,109,
4	11.7	Cylindrical and spherical coordinates	1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,49,41,53,57- 62,35,37,39,63,65,67,71,73,75,77,83,85,87,91,93,99-104
4	12.1	Vector-Valued functions	1,3,5,7,9,11,13,15,19—22,23,27,31,
5	12.3	Velocity and acceleration	1,3,5,7.9,11,13,15,17,19,31,33,37,25,27,43,47,49,51,53,55,
5	12.4	Tangent vectors and normal vectors' curvature	1,3,5,7,9,11,13,15,29,31,37,39,41,51,53,55,49,69,71,
5	12.5	Arc length and Curvature	3,5,9,11,13,29,31,33,37,39,49,51,55,67,73,79,91,93,83,91,9 3,
6	13.1	Introduction to functions of several variables	1,2,3,5,7,9,11,13,15,17,23,25,27,29,31,45—48,47,49,51,53,78.
6	13.2	Limits and continuity	23,25,27,29,321,33,35,37,38,39,40,41,42,69-72,73,74
		Exam 2	
7	13.3	Partial Derivatives	7-38,51,53,55,59,51,63,65,67,69,83,87,89,112,113
7	13.4	Differentials'	
7	13.5	Chaine Rules for Functions of several variables	1,3,5,7,13,15,36,32,33,35,38,39,43,1,3,5,7,9,11,13,15,41,49 ,51,53,55
8	13.6	Directional derivatives and gradient	1,3,5,7,9,11,13,15,17,27,29,31,37,39,40,43,46,6973,
8	13.7	Tangent Planes and normal lines n	1,3,5,7,9,11,13,15,17,19,31,33,35,37,39,41,43,45,49,51,
8	13.8	Extrema of Functions of two variables	1,3,5,7,9,11,13,15,17,19,17,41,43,45,47,

9	14.1	Iterated integrals and Area in The Plane	: 1,2,3,4,5,6,7,863,
9	14.2	Double integrals	1,2,3,4,5,6,755
9	14.3	Change of Variables: Polar Coordinates	1,2,3,4,5,6,743,
11	14.5	Surface Area	1,2,3,4,5,6,713
10	14.6	Triple integrals and Applications	1,3,5,7,11,12,13,14,15,1525,27,6,17,18,19,21,22,23,24,25,2 7,29,31,33,39,41,
10	14.7	Triple integrals in Other Coordinates	1,3,5,9,13,15,17,
		Exam 3	
11	15.1	Vector Field	1-4,15,17,23,33,37,41,43,45,47,49,51,53,57-60,63,
11	15.2	Line integrals	1-5,15,17,7.9,11,13,19,23,25,27,29,41,42,55,57,59
12	15.3	Conservative vector fields	1,3,5,9,7,9,15,17,19,21,23,25,27,29,35,43,
12	15.4	Greens theorem	1,3,5,7,9,13,15,17,19,21,23,33,35,41,45,47,
13	15.5	Parametric Surfaces	1,3,5,13,17,21,23,25,27,39,31,43,37,51,17,19,29,31,
13	15.6	Surface integrals	1,3,5,7,9,11,17
14	15.7	Divergence theorem	5,7,9,11,13,15
14	15.8	Stokes's theorem	5,7,9,11,13,15,17
15		Final exam	

HCCC POLICIES, STATEMENTS, AND SERVICES:

https://www.hccc.edu/administration/academic-affairs/syllabus-addendum.html

